Abstract collage of overlapping, bright-colored glowing circles
Event ended Lectures

Computational Thinking, Inferential Thinking and Data Science

About this event

Abstract:

The phenomenon of Big Data is creating a need for research perspectives that blend computational thinking (with its focus on, e.g., abstractions, algorithms and scalability) with inferential thinking (with its focus on, e.g., underlying populations, sampling patterns, error bars and predictions). There are many grand challenges involving in creating such a blend; indeed, there are foundational problems that span computation and inference that are far from being solved. There are also many implications for research, technology, policy and education.

 

Bio: 

Michael I. Jordan is the Pehong Chen Distinguished Professor in the Department of Electrical Engineering and Computer Science and the Department of Statistics at the University of California, Berkeley. He received his Masters in Mathematics from Arizona State University, and earned his PhD in Cognitive Science in 1985 from the University of California, San Diego. He was a professor at MIT from 1988 to 1998. His research interests bridge the computational, statistical, cognitive and biological sciences, and have focused in recent years on Bayesian nonparametric analysis, probabilistic graphical models, spectral methods, kernel machines and applications to problems in distributed computing systems, natural language processing, signal processing and statistical genetics. Prof. Jordan is a member of the National Academy of Sciences, a member of the National Academy of Engineering and a member of the American Academy of Arts and Sciences. He is a Fellow of the American Association for the Advancement of Science. He has been named a Neyman Lecturer and a Medallion Lecturer by the Institute of Mathematical Statistics. He received the David E. Rumelhart Prize in 2015 and the ACM/AAAI Allen Newell Award in 2009. He is a Fellow of the AAAI, ACM, ASA, CSS, IEEE, IMS, ISBA and SIAM.

To Join the Webinar:

Please register at: https://nsf.webex.com/nsf/j.php?RGID=r1f835c8027254103fada5df81e24c9c2

by 11:59pm EST on Wednesday, January 27, 2016.

After your registration is accepted, you will receive an email with a URL to join the meeting. Please be sure to join a few minutes before the start of the webinar. This system does not establish a voice connection on your computer; instead, your acceptance message will have a toll-free phone number that you will be prompted to call after joining. If you are international, please email kgeary@nsf.gov to obtain the appropriate dial in number.  Please note that this registration is a manual process; therefore, do not expect an immediate acceptance. In the event the number of requests exceeds the capacity, some requests may have to be denied.