Synopsis
The Metals and Metallic Nanostructures (MMN) Program supports fundamental research and education on the relationships between processing, structure and properties of metals and their alloys. The program focuses on experimental research while strongly encouraging the synergistic use of theory and computational materials science. Structure spanning atomic, nanometer, micrometer and larger length scales controls properties and connects these with processing. The program emphasizes the role of structure across all these length scales, including structural imperfections such as vacancies, solutes, dislocations, boundaries and interfaces. Research should advance fundamental materials science that will enable the design and synthesis of metallic materials to optimize superior behaviors and enable the prediction of properties and performance. The program aims to advance the materials science of metals and alloys through transformative research on a diverse array of topics, including, but not limited to, phase transformations; equilibrium, non-equilibrium and far-from equilibrium structures; thermodynamics; kinetics; diffusion; interfaces; oxidation; performance in extreme environments; recyclability; magnetic behavior; thermal transport; plastic flow; and similar phenomena. Yield strength, flow stress, creep, fatigue and fracture are structural-materials examples. Magnetic energy density, shape-memory strain and thermoelectric efficiency are examples for functional materials. Broader impacts are expected in education and other areas, such as workforce development, sustainability, environmental impact or critical infrastructure needs. High-quality proposals that integrate research, education, and other broader impacts are invited.
Program contacts
Diana Farkas
|
dfarkas@nsf.gov | (703) 292-7576 |