Synopsis
Deep learning has met with impressive empirical success that has fueled fundamental scientific discoveries and transformed numerous application domains of artificial intelligence. Our incomplete theoretical understanding of the field, however, impedes accessibility to deep learning technology by a wider range of participants. Confronting our incomplete understanding of the mechanisms underlying the success of deep learning should serve to overcome its limitations and expand its applicability. The National Science Foundation Directorates for Mathematical and Physical Sciences (MPS), Computer and Information Science and Engineering (CISE), Engineering (ENG), and Social, Behavioral and Economic Sciences (SBE) will jointly sponsor new research collaborations consisting of mathematicians, statisticians, electrical engineers, and computer scientists. Research activities should be focused on explicit topics involving some of the most challenging theoretical questions in the general area of Mathematical and Scientific Foundations of Deep Learning. Each collaboration should conduct training through research involvement of recent doctoral degree recipients, graduate students, and/or undergraduate students from across this multi-disciplinary spectrum. This program complements NSF's National Artificial Intelligence Research Institutes and Harnessing the Data Revolution programs by supporting collaborative research focused on the mathematical and scientific foundations of Deep Learning through a different modality and at a different scale.
When responding to this solicitation, even though proposals must be submitted through the Directorate for Mathematical and Physical Sciences, Division of Mathematical Sciences (MPS/DMS), once received, the proposals will be managed by a cross-disciplinary team of NSF Program Directors. PI teams must collectively possess appropriate expertise in three disciplines - computer science, electrical engineering, and mathematics/statistics. Each project must clearly demonstrate substantial collaborative contributions from members of their respective communities; projects that increase diversity and broaden participation are encouraged.
A wide range of scientific themes on theoretical foundations of deep learning may be addressed in these proposals. Likely topics include but are not limited to geometric, topological, Bayesian, or game-theoretic formulations, to analysis approaches exploiting optimal transport theory, optimization theory, approximation theory, information theory, dynamical systems, partial differential equations, or mean field theory, to application-inspired viewpoints exploring efficient training with small data sets, adversarial learning, and closing the decision-action loop, not to mention foundational work on understanding success metrics, privacy safeguards, causal inference, and algorithmic fairness.
Program contacts
General inquiries may be addressed to modl@nsf.gov
Huixia Wang Program Director
|
huiwang@nsf.gov | (703) 292-2279 | |
Aranya Chakrabortty Program Director
|
achakrab@nsf.gov | (703) 292-8113 | |
Wei Ding Program Director
|
weiding@nsf.gov | (703) 292-8017 | |
Funda Ergun Program Director
|
fergun@nsf.gov | (703) 292-8910 | |
Eun Heui Kim Program Director
|
eukim@nsf.gov | (703) 292-2091 | |
Tracy Kimbrel Program Director
|
tkimbrel@nsf.gov | (703) 292-7924 | CISE/CCF |
Phillip A. Regalia Program Director
|
pregalia@nsf.gov | (703) 292-2981 | CISE/CCF |
Christopher W. Stark Program Director
|
cstark@nsf.gov | (703) 292-4869 | |
Zhengdao Wang Program Director
|
zwang@nsf.gov | (703) 292-7823 | |
Kenneth C. Whang Program Director
|
kwhang@nsf.gov | (703) 292-5149 | CISE/IIS |
Joseph M. Whitmeyer Program Director
|
jwhitmey@nsf.gov | (703) 292-7808 | SBE/SES |